
Math 641 Final Exam 12/12/12

1. For M a smooth m-manifold, let v ∈ Tp(M). Show that there is a smooth vector field X on M
with X(p) = v.

Solution: Choose coordinates x1, . . . , xm on an open neighborhood U of p. Write v =∑
i vi

∂
∂xi

(here vi are simply numbers). Define a vector field Y on U by Y =
∑

i vi
∂
∂xi

, so

clearly Yp = v. Choose open neighborhoods p ∈ V ⊂ W ⊂ U so that V ⊂ U and W ⊂ U ,
and let ϕ be a smooth cutoff function which is 1 on V and 0 outside of W . Define X = ϕY
on U and X = 0 otherwise. X is smooth U and zero outside of W , hence a smooth vector
field on all of M , and Xp = ϕ(p)Yp = v.

2. Define three vector fields on R3:

X =
∂

∂x
− y

2

∂

∂z
; Y =

∂

∂y
+
x

2

∂

∂z
; Z =

∂

∂z
.

Show that [X,Z] = [Y,Z] = 0 and that [X,Y ] = Z.

Solution: This is a straightforward computation. These aren’t just random fields. The

Heisenberg group H consists of 3x3 matrices of the form

1 x z
0 1 y
0 0 1

, and identifying H

with R3, the fields X, Y , and Z are a basis for the vector fields which are invariant under
the group multiplication.

3. Suppose M is a hypersurface (n− 1-dimensional embedded manifold) in Rn. Let N be the be
normal bundle over M : The vector bundle whose fiber at p ∈M is the one-dimensional space
of normal vectors to M at p. Show that N is trivial if and only if M is orientable.

Solution: If M is orientable then there is a unit normal vector field X : M → N . This is
a nonzero section of N , so N is trivial. Conversely, if N is trivial, there is a nonzero section
X : M → N . Then X

||X|| is a unit normal vector field and so M is orientable.

4. Let c : R→ R2 be any smooth curve in the plane. Show that for all ε > 0, there is x ∈ R2 with
||x|| < ε so that x is not in the image of the curve c.

Solution: Sard’s Theorem says that the set χ of critical values of c has measure 0 in R2.
Then χ does not contain the ball B(0, ε), so choose x ∈ B(0, ε)−χ. The point x is a regular
value of c, but since dimTR = 1 < 2 = dimTR2, Tc is never surjective, so x is not in the
image of c.



5. Let M(2) denote the space of 2× 2 matrices with real entries. Let

N = {A ∈M(2)|A 6= 0, det(A) = 0}.

Show that N is a manifold.

Solution:

Way 0: The map det is given by detA = det

(
a b
c d

)
= ad − bc. This has tangent map

T det = (d,−c,−b, a) : TR4 → TR. This has rank 1 unless A is the zero matrix. Now
M∗ = M(2)−{0} is a manifold since it is an open subset of M(2), and 0 is a regular
value of det

∣∣
M∗ , so det−1(0) = N is a manifold.

Way 1: Let U` be the set of matrices in N with nonzero left column, and Ur be the set
of matrices in N with nonzero right column. Note that N = U` ∪ Ur. For A ∈

U`, write A =

(
x λx
y λy

)
(which we can do because the columns of A are linearly

dependent). Put φ`(A) = (x, y, λ). Similarly, for A ∈ Ur, write A =

(
λx x
λy y

)
and put φr(A) = (x, y, λ). On U` ∩ Ur, the change of coordinates map is given by
(φ−1r ◦ φ`)(x, y, λ) = (λx, λy, λ−1), which is smooth. The inverse φ−1` ◦ φr has the
same formula and is also smooth. Then (U`, ϕ`) and (Ur, ϕr) define an atlas on N .

Way 2: For A ∈ N , the kernel of A is a line through the origin. Let Uh be the set of
A ∈ N whose kernel is not horizontal, and Uv be the A with kernel which is not
vertical. For A ∈ Uh, let θ ∈ (0, π) be the angle that kerA makes with the positive

x-axis (well defined on Uh). Let Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, clockwise rotation by θ.

Then ARθ

(
1
0

)
= 0, so ARθ =

(
0 x
0 y

)
and define ϕh(A) = (x, y, θ). Note

(
x
y

)
=

ARθ

(
0
1

)
. Similarly define ϕv(A) on Uv, except θ ∈ (−π/2, π/2). When kerA has

positive slope, ϕh(A) = ϕv(A) so the coordinate change is just the identity. When
kerA has negative slope, if ϕh(A) = (x, y, θ) then ϕv(A) = (−x,−y, θ − π) since
Rθ−π = −Rθ. Then (Uh, ϕh) and (Uv, ϕv) define an atlas on N .

Note: Way 1 and way 2 are reminescent of putting stereographic and angular coordinates
on a circle, respectively. In both cases, it’s easy to see that the set of matrices in N
with a fixed λ or θ form a two dimensional vector space, so that N is a vector bundle
over the circle. N is a trivial bundle over S1 (show it!) so that N is diffeomorphic to
R2 × S1.

Bonus: Generalize these results to N ⊂M(n), the set of n×n matrices with one dimensional
kernel. What dimension is N? Generally, N is a bundle over RPn−1 with projection
π : N → RPn−1 given by π(A) = kerA. Is this a trivial bundle?

6. Show that there is no submersion S1 → R. Is there a submersion S1 × R→ R2?



Solution: Suppose f : S1 → R is smooth. Let y = supt∈S1 f(t). Since S1 is compact,
there is t ∈ S1 with f(t) = y. In local coordinates near t, f has a maximum at t so Ttf = 0
and Ttf is not surjective onto TyR. So f is not a submersion.

One submersion from S1 × R→ R2 is given by f(θ, r) = (r cos(θ), r sin(θ)).

7. The Mobius strip M is the quotient of R× [−π/2, π/2] by the equivalence (θ, ϕ) ∼ (θ+2π,−ϕ).
Define f : M → C2 by f(θ, ϕ) = (cos(ϕ)eiθ, sin(ϕ)eiθ/2).

(a) Show that f is well defined as a function on M .

(b) Show that f is an embedding.

(c) Show that the image of f lies in the unit sphere S3 ⊂ C2.

Remark: This embedding is cool because the boundary of M is sent to a perfect circle in S3.
Applying stereographic projection, one gets an embedding of M into R3 with circular boundary.

Solution:

(a)

f(θ + 2π,−ϕ) = (cos(−ϕ)ei(θ+2π), sin(−ϕ)ei(θ+2π)/2)

= (cos(ϕ)eiθ,− sin(ϕ)eiθ/2eiπ) = f(θ, ϕ)

So f is well defined.

(b) First, see f is injective. Suppose f(θ, ϕ) = (z, w) with θ ∈ [0, 2π). We know sinϕ =
±|w|. Since Im eiθ/2 ≥ 0, the sign on sinϕ must match the sign of Imw, which means
ϕ = arcsin(±|w|). Once ϕ is known, θ can be computed from z/ cos(ϕ) or w/ sin(ϕ),
whichever doesn’t involve division by zero.

Next, show f is an immersion:

Tf =

(
i cos(ϕ)eiθ − sin(ϕ)eiθ

i
2 sin(ϕ)eiθ/2 cos(ϕ)eiθ/2

)
so detTf = ie3iθ/2(cos2(ϕ) + 1

2 sin2(ϕ)) 6= 0. So, Tf has rank 2 everywhere and f is
an immersion.

(c) For any (θ, φ), | cos(ϕ)eiθ|2 + | sin(ϕ)eiθ/2|2 = cos2(ϕ) + sin2(ϕ) = 1, so the image of f
is on the unit sphere in C2.

8. Let M(n) denote the vector space of n×n matrices. Since M(n) is a vector space, the tangent
space to M(n) at the identity is naturally identified with M(n). Let O(n) ⊂ M(n) be the
orthogonal matrices. Show any tangent vector to O(n) at the identity is a skew-symmetric
matrix.



Solution: Let S ∈ TIO(n). Let A(t) be a curve in O(n) with A(0) = I with A′(0) = S.
Then I = AAT for all t. Taking the derivative of both sides at t = 0,

0 =
d

dt
AAT

∣∣
t=0

= A′AT +A(AT )′
∣∣
t=0

= A′(0)I + I(A′)T (0) = A′(0) + (A′(0))T = S + ST .

Since S + ST = 0, S is skew-symmetric.


