Math 641 **Final Exam** 12/12/12

- 1. For M a smooth m-manifold, let $v \in T_p(M)$. Show that there is a smooth vector field X on M with $X(p) = v$.
- 2. Define three vector fields on \mathbb{R}^3 :

$$
X = \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z}; \quad Y = \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial z}; \quad Z = \frac{\partial}{\partial z}.
$$

Show that $[X, Z] = [Y, Z] = 0$ and that $[X, Y] = Z$.

- 3. Suppose M is a hypersurface $(n-1)$ -dimensional embedded manifold) in \mathbb{R}^n . Let N be the be normal bundle over M: The vector bundle whose fiber at $p \in M$ is the one-dimensional space of normal vectors to M at p. Show that N is trivial if and only if M is orientable.
- 4. Let $c : \mathbb{R} \to \mathbb{R}^2$ be any smooth curve in the plane. Show that for all $\varepsilon > 0$, there is $x \in \mathbb{R}^2$ with $||x|| < \varepsilon$ so that x is not in the image of the curve c.
- 5. Let $M(2)$ denote the space of 2×2 matrices with real entries. Let

$$
N = \{ A \in M(2) | A \neq 0, \det(A) = 0 \}.
$$

Show that N is a manifold.

- 6. Show that there is no submersion $S^1 \to \mathbb{R}$. Is there a submersion $S^1 \times \mathbb{R} \to \mathbb{R}^2$?
- 7. The Mobius strip M is the quotient of $\mathbb{R} \times [-\pi/2, \pi/2]$ by the equivalence $(\theta, \varphi) \sim (\theta + 2\pi, -\varphi)$. Define $f: M \to \mathbb{C}^2$ by $f(\theta, \varphi) = (\cos(\varphi)e^{i\theta}, \sin(\varphi)e^{i\theta/2}).$
	- (a) Show that f is well defined as a function on M .
	- (b) Show that f is an embedding.
	- (c) Show that the image of f lies in the unit sphere $S^3 \subset \mathbb{C}^2$.

Remark: This embedding is cool because the boundary of M is sent to a perfect circle in S^3 . Applying stereographic projection, one gets an embedding of M into \mathbb{R}^3 with circular boundary.

8. Let $M(n)$ denote the vector space of $n \times n$ matrices. Since $M(n)$ is a vector space, the tangent space to $M(n)$ at the identity is naturally identified with $M(n)$. Let $O(n) \subset M(n)$ be the orthogonal matrices. Show any tangent vector to $O(n)$ at the identity is a skew-symmetric matrix.