The deRham Cohomology of $Sⁿ$.

Given that 1) cohomology is a homotopy invariant, and 2) the Poincare lemma, compute the deRham cohomology of $Sⁿ$.

Proceed by induction on n, the $n = 1$ case computed directly by integration. Let $S^n = U \cup V$ with $U \simeq \mathbb{R}^n$, $V \simeq \mathbb{R}^n$, and $U \cap V \simeq S^{n-1}$. For example, U

and V could be $Sⁿ$ with the North and South pole removed, respectively.

Let $\omega \in \bigwedge^k (S^n)$ be a closed k-form.

• Case $1 < k < n$:

Since $H^k(\mathbb{R}^n) = 0$, there is $\alpha \in \bigwedge^{k-1}(U)$ and $\beta \in \bigwedge^{k-1}(V)$ with $d\alpha = \omega|_U$ and $d\beta = \omega|_V$.

On $U \cap V$, $d(\alpha - \beta) = 0$. Since $H^{k-1}(S^{n-1}) = 0$, there is $\tau \in \bigwedge^{k-2}(U \cap V)$ with $d\tau = (\alpha - \beta)|_{U \cap V}$.

Now let f_U, f_V be a partition of unity subordinate to U, V . Then on $U \cap V$, $d(f_U \tau) + d(f_V \tau) = \alpha - \beta.$

Since $f_U \tau$ extends (by 0) to a form on V, $\beta + d(f_U \tau)$ is defined on V. Since $f_V \tau$ extends to a form on U, $\alpha - d(f_V \tau)$ is defined on U.

Put $\sigma = \beta + d(f_U \tau) = \alpha - d(f_V \tau)$. σ is defined on all of $Sⁿ$, and $d\sigma = \omega$, so that ω is exact.

• Case $k = 1$:

When $k = 1$, α and β as above are functions with $d(\alpha - \beta) = 0$, so $\alpha = \beta + C$ for some constant C, so that α extends to a function on all of S^n and $d\alpha = \omega$.

• Case $k = n$: Show that any n form with integral 0 is exact, so that $H^n(S^n) = \mathbb{R}$ generated by the volume form.

Suppose $\int_{S^n} \omega = 0$. Take α, β as above, and let H, L be the upper and lower hemispheres of $Sⁿ$. Then using Stokes' theorem,

$$
\int_{S^{n-1}} \alpha - \beta = \int_L d\alpha + \int_H d\beta = \int_{S^n} \omega = 0
$$

Then $\alpha - \beta$ is exact, and the proof proceeds as in the $1 < k < n$ case.