
CS 150 Final Project 11/14/11

The final project for this course is to create a turn-based game in Python with a graphical
user interface. The choice of game and details of its rules are up to you. The end product
should be a finished game that is fun to play.

Turn-based Game

The game you choose should involve one, two, or more players taking turns to be active.
In a turn-based game, the computer waits for input, doing nothing until the player makes
a move. Battleship, Monopoly, and minesweeper are examples of turn based games. For
contrast, in an arcade game, the player is continuously providing input while at the same
time the computer takes other actions.

There is a large list of turn-based games on our course website. You can select one of
these, choose another game you know and enjoy, or even create your own completely new
game. However, it is probably to your advantage to imitate an existing game, where the end
goal is clearly defined.

Graphical User Interface

Your game should have a graphical user interface written with cs1graphics. During the first
steps programming the game, you will probably want to implement a text interface as well,
using print and raw_input. The finished product should be completely playable without
having to provide command line input. If your code is well designed, changing the user
interface back and forth between text and graphics should be straightforward.

Computer Opponent

The game must have the option of playing with human or computer players. A two player
game should provide the option of human vs. human, human vs. computer, or computer
vs. computer play. Multiplayer games should be equally flexible, and even a single player
game (such as minesweeper) should have the option of a computer player that makes moves
automatically.

The computer opponent should always make legal moves, but does not need to play well
at all. Having it select a (legal) move randomly is perfectly acceptable.

Software Design

Good software design is an important component of the project. Separate your code into
modules in separate files. Classes and most methods should have docstrings. Create unit
tests as you go, and leave them in the final product. Choose names carefully and follow a
consistent naming convention.

In addition, the program should provide rules and instructions to the player, preferrably
as a help screen or at least with printed output at startup.



Deliverables

There are four checkpoints in this project where you need to hand in something. The
proposal, where you describe the project you plan to create, an alpha version, a beta version
which is playable, and a finished version.

Project Proposal

The proposal should describe the game you plan to create. It should include, at least:

• The name of the game and the rules as you plan to implement them. How is the game
set up, how does a turn work, and how does the game end?

• A plan for the user interface: What will the player see, what actions will the player
need to take to play the game. Give the sequence of user actions and game responses
that happen during the course of a turn. A sketch of the screen layout would also
be appropriate here. You should also consider how you will implement a simple text
interface for development and testing purposes.

• Additional ”fantasy” features you might include if time permits.

• The major components (classes) your program will need, and some of the methods that
they will support. A component diagram such as Figure 7.4 of the textbook would be
helpful.

• A discussion of steps you can take towards writing the program. What is the first thing
you will write? What do you expect the alpha and beta versions to look like?

• An idea for how the computer might play the game. You can be sophisticated, but
also try to think of the simplest possible way to generate legal moves.

The proposal documents the specifications and high-level design of your game. A thought-
ful and detailed proposal will be helpful to you as a reference when actually writing code. It
also gives you a chance to get feedback on major design issues before committing to them.
The proposal serves as an agreement about what your project will deliver. Though this is
allowed to change, you should check with the instructor before making a major change to
the proposed game.

Alpha Version

The alpha version should include basic classes and data structures your game will need, the
beginnings of a text-based interface to the game, and any other components of the game
that can be isolated and built. For example, a Battleship game would include a Board class
at this point, with the ability to store ships, hits, and misses. It would be appropriate to
have a text display of the board and methods to place ships and take shots.

The alpha version does not have to do anything, although each file should have unit tests
and it will serve you well to keep them working at all times.



Beta Version

The beta version should be a playable version of the game, which may be missing important
features or still have many bugs. The core component of game play should be working well,
possibly only through a text-based interface. The graphical interface should be well under-
way. The basic classes your program requires should be written, stable, and documented
with working unit tests. The computer opponent should be working.

For example, a checkers game might have a graphic display of the board but still require
the user to input moves by typing them. Checking for legal moves should work, but maybe
advanced game rules such as double jumps and kings would be missing at this stage. The
end of the game (declaring a winner) might not be finished yet. The computer player works
by trying random moves until it happens to find a legal one.

Assignment Details

Due Dates

Proposal Friday, November 18, in class or by email (bryan@slu.edu) before 2pm.

Alpha Tuesday, November 29, midnight

Beta Tuesday, December 5, midnight

Final Tuesday, December 13, midnight.

The proposal, alpha, and beta versions should be turned in on time. The final version will
have a late policy with a loss of 5 percent per day until Sunday, December 18 at midnight,
after which no projects will be accepted under any circumstances. Our final exam is Monday,
December 19 from 8-9:50am.

The alpha, beta, and final version should be handed in electronically by their due dates.
Hand in all files necessary to run your program. You may also want to hand in a plain text
file called README if you have any special requirements or instructions to the user.

Grading

The proposal, alpha, and beta versions each count 10% towards the final project score, and
you can expect to receive full credit for these if they are handed in on time. The difficulty
and complexity of the project does count towards the final grade. For example, a playable
Monopoly game which is missing some game features would be a better project than a
perfectly working tic-tac-toe program. The proposal and the feedback you receive on the
proposal should give a good indication of what features you will need to include in your
game.

This project will count as one third (1/3) of your programming score for the course,
which amounts to about 17% of the total course grade.


