Math 452 - Homework 7 - Due Wednesday, March 24

Do Conway, Pg 173 # 1, 4, 5, 6, 7, 8.

1. For each sequence below, determine the convergence or divergence of $\prod_{n=1}^{\infty} z_n$:

(a)
$$z_n = 1 - \frac{1}{n+1}$$

(b) $z_n = 1 - \frac{1}{n^2 + 1}$
(c) $z_n = \cos(\pi n)$
(d) $z_n = \sin(\pi/n)$ (for $n \ge 2$)

- (e) $z_n = \cos(\pi/n)$ (for $n \ge 3$)
- 2. (a) Show that $(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})(1-\frac{1}{25})\cdots$ converges absolutely.
 - (b) Show that $(1-\frac{1}{2})(1+\frac{1}{2})(1-\frac{1}{3})(1+\frac{1}{3})(1-\frac{1}{4})(1+\frac{1}{4})\cdots$ converges, but not absolutely. (Hint: relate to part (a))
- 3. Show that

$$\prod_{m=1}^{\infty} \left(1 - \frac{1}{m} \right) e^{1/m}$$

converges absolutely.

4. Let p_n denote the n^{th} prime number $(p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, ...)$. Prove that

$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{p_n^2} \right)^{-1} = \sum_{m=1}^{\infty} \frac{1}{m^2}.$$

Hint: Expand each term of the left hand side as a geometric series, then multiply termby-term.

5. For which of the following sequences $a_n(z)$ is the product

$$\prod_{n=1}^{\infty} (1 + a_n(z))$$

convergent to an entire function P(z)?

(a)
$$a_n(z) = q^n z$$
, where $|q| < 1$
(b) $a_n(z) = \frac{z}{n^2}$.
(c) $a_n(z) = \frac{z}{\log(n+1)}$.