Homework 11

Exercises

Webwork: parameterized-curves

- Chapter 17.1 # 68,71, 85
- **Chapter 17.2** # 29,42
- **Problem A:** Let $\vec{r}(t) = e^t \cos(t)\vec{i} + e^t \sin(t)\vec{j}$ for t any real number. Graph $\vec{r}(t)$, the logarithmic spiral. Compute the length of \vec{r} for t from $-\infty$ to 0.

Problem B: Show the product rule for $\vec{r_1} = x_1\vec{i} + y_1\vec{j} + z_1\vec{k}$ and $\vec{r_2} = x_2\vec{i} + y_2\vec{j} + z_2\vec{k}$:

$$\frac{d}{dt}(\vec{r_1} \cdot \vec{r_2}) = \vec{r_1}' \cdot \vec{r_2} + \vec{r_1} \cdot \vec{r_2}'$$

Problem C: For a curve $\vec{r}(t)$, show that

$$\frac{d}{dt}||\vec{r}|| = \frac{\vec{r}}{||\vec{r}||} \cdot \vec{r}'$$

by computing $\frac{d}{dt}(\vec{r}\cdot\vec{r})$ in two different ways. Give a geometric interpretation of this statement.