1. Does the series converge? Explain why or why not.

(a)
$$\sum_{n=0}^{\infty} \frac{2}{n^2 + 1}$$
Solution: This converges by comparison with $\sum_{n=0}^{\infty} \frac{2}{n^2}$, since $\frac{2}{n^2 + 1} < \frac{2}{n^2}$ and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ is a *p*-series with $p > 1$. You can also see this by the integral test, since $\int_{0}^{\infty} \frac{2}{x^2 + 1} dx = 2 \arctan(x) \Big|_{0}^{\infty} = \pi < \infty$.
(b) $\sum_{n=1}^{\infty} \frac{1}{2n}$
Solution: This diverges since $\sum_{n=0}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n}$, and the harmonic series diverges.
(c) $\sum_{n=2}^{\infty} \frac{1}{n^2 \log(n)}$
Solution: This converges. Compare with $\sum_{n=2}^{\infty} \frac{1}{n^2}$, since $\frac{1}{n^2 \log(n)} < \frac{1}{n^2}$.
(d) $\sum_{n=0}^{\infty} \frac{e^n + n}{e^n + 2^n}$
Solution: This diverges since the terms $\frac{e^n + n}{e^n + 2^n} \rightarrow 1$ (not zerol!) as $n \rightarrow \infty$.
(e) $\sum_{n=1}^{\infty} \sqrt{\frac{n^3 - 1}{n^6 + 1}}$
Solution: This converges. $\sqrt{\frac{n^3 - 1}{n^6 + 1}} < \sqrt{\frac{n^3}{n^6}} = \frac{1}{n^{3/2}}$. The series converges by comparison with the convergent series $\sum_{n=1}^{\frac{1}{n^{3/2}}}$.
(f) $\sum_{n=1}^{\infty} \frac{1}{n^2 - 5n/2}$
Solution: This converges. First, you want to ignore the $n = 1$ and $n = 2$ term since they are negative. Then, use the integral test:
 $\int_{3}^{\infty} \frac{dx}{x^2 - 5x/2} = \frac{2}{5} \log\left(\frac{x - 5/2}{x}\right)\Big|_{3}^{\infty} = \frac{2}{5} \log 6 < \infty$.
Alternately, you can use the comparison test. You'd like to compare with $\sum_{n=1}^{\frac{1}{n}}$ but the terms of our series are larger than $\frac{1}{n^2}$. The trick is to notice that eventually $5n/2 < \frac{n^2}{2}$. This happens for all $n > 5$. Then $n^2 - 5n/2 > n^2 - \frac{n^2}{n^2} = n^2/2$ so that $\frac{n^2 - 5n/2}{n^2 - 5n^2}$.