converges.

1. Does the series converge? Explain why or why not.

(a)
$$
\sum_{n=0}^{\infty} \frac{2}{n^2 + 1}
$$

\n**Solution:** This converges by comparison with $\sum_{n=0}^{\infty} \frac{2}{n^2}$, since $\frac{2}{n^2 + 1} < \frac{2}{n^2}$ and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ is a *p*-series with $p > 1$. You can also see this by the integral test, since $\int_0^{\infty} \frac{1}{x^2 + 1} dx = 2 \arctan(x) \Big|_0^{\infty} = \pi < \infty$.
\n(b)
$$
\sum_{n=1}^{\infty} \frac{1}{2n}
$$

\n**Solution:** This diverges since
$$
\sum_{n=0}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n}
$$
, and the harmonic series diverges.
\n(c)
$$
\sum_{n=2}^{\infty} \frac{1}{n^2 \log(n)}
$$

\n**Solution:** This converges. Compare with $\sum_{n=2}^{\infty} \frac{1}{n^2}$, since $\frac{1}{n^2 \log(n)} < \frac{1}{n^2}$.
\n(d)
$$
\sum_{n=0}^{\infty} \frac{e^n + n}{e^n + 2^n}
$$

\n**Solution:** This diverges since the terms $\frac{e^n + n}{e^n + 2^n} \to 1$ (not zero!) as $n \to \infty$.
\n(e)
$$
\sum_{n=1}^{\infty} \sqrt{\frac{n^3 - 1}{n^6 + 1}}
$$

\n**Solution:** This converges.
$$
\sqrt{\frac{n^3 - 1}{n^6 + 1}} < \sqrt{\frac{n^3}{n^6}} = \frac{1}{n^{3/2}}
$$
. The series converges by comparison with the convergent series $\sum_{n \neq 2}^{\infty} \frac{1}{n^3}$.
\n(f)
$$
\sum_{n=1}^{\infty} \frac{1}{n^2 - 5n/2}
$$

\n**Solution:** This converges. First, you want to ignore the <math display="</p>