Math 1520

1. Find the limit of each sequence, if it exists.

(a)
$$a_n = \frac{n^2 + 1}{2n^2 + 1}$$

Solution: 1/2
(b) $b_n = \cos\left(\frac{1}{n}\right)$
Solution: 1
(c) $c_n = \cos\left(\frac{\pi n}{2}\right)$
Solution: Limit does not exist.
(d) $d_n = \frac{n!}{4^n}$
Solution: Limit does not exist (it diverges to ∞).
(e) $e_1 = 1$ and $e_n = \cos(e_{n-1})$
Solution: $\approx 0.7390851...$
(f) $f_n = n \sin\left(\frac{1}{n}\right)$
Solution: 1
(g) $g_n = \frac{1}{\sin(n)}$
Solution: Limit does not exist.
(h) $h_1 = 2$ and $h_{n+1} = \frac{h_n^2 + 2}{2h_n}$
(i) $k_n = n! \sin(\pi n)$
Solution: 0
(j) $\gamma_n = \int_1^n \frac{1}{x} dx - \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right)$

Solution: This limit, known as the *Euler-Mascheroni constant* is approximately 0.57721.