A MacLaurin series is a Taylor series at x = 0:

$$C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \cdots$$

where $C_n = \frac{f^{(n)}(0)}{n!}$.

1. Find the MacLaurin series for $f(x) = e^x$ using the table below:

n	0	1	2	3	4	5
$f^{(n)}(x)$	e^x					
$f^{(n)}(0)$						
$C_n = \frac{f^{(n)}(0)}{n!}$ Write the Mac						

Write the MacLaurin series for e^x using \cdots , and also using summation notation (Σ) :

2. Use the 5th degree Taylor polynomial for e^x at x = 0 to approximate $e = e^1$.

3. Find the MacLaurin series for $g(x) = e^{x^2}$ by plugging in x^2 to your previous series.

4. Find the 8th derivative of e^{x^2} at x = 0.