You may use a graphing calculator (TI-83, 84, for example) on this exam, but not one that can perform symbolic integration.

There are 10 questions, worth a total of 100 points.

- (10) 1. Let A be the region bounded by $y = x^4$, the x-axis, and the line x = 1. Find the volume of the solid obtained by rotating A around the x-axis.
- (10) 2. Find the centroid of the region bounded by $y = \frac{1}{x}$ and the lines $y = \frac{1}{2}$ and $x = \frac{1}{2}$.
- (10) 3. The functions x(t) = a cos(t) and y(t) = b sin(t) define an ellipse, for 0 ≤ t ≤ 2π. Set up an integral to find the circumference (arclength) of this ellipse. You do not need to work out the integral. It is called an *elliptic integral* and cannot be computed, except numerically.
- (10) 4. Sketch an accurate plot of the curve given in polar coordinates by $r = \sin(2\theta)$ for $\theta \in [0, 2\pi]$. (Hint: it looks like a clover with four petals)
- (10) 5. Find the area of one petal of the curve in question 4. (You probably don't want to do this integral by hand, but this is a sample exam so it's ok.)
- (10) 6. Give an example of a sequence $\{a_n\}$ which has these three properties:
 - All terms are positive $(a_n > 0 \text{ for all } n)$.
 - The sequence is not bounded above.
 - The sequence $\frac{1}{a_n}$ does not converge.
- (10) 7. Let $a_n = e^{\left(\frac{n-1}{n+1}\right)}$ for $n \ge 1$. Does the sequence $\{a_n\}$ converge or diverge? If it converges, find its limit.
- (10) 8. Write the series

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{32} + \cdots$$

using summation notation (use a \sum). Then compute its value.

(10) 9. For each series, decide if it converges or diverges (no explanation required).

(a)
$$\sum_{n=1}^{\infty} \frac{10n^2 - n - 3}{n^4 - n^3 - n^2 + 2}$$

(b)
$$\sum_{n=1}^{\infty} \sqrt{\frac{1}{n}}$$

(c) $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots$
(d) $1000 + \frac{1000}{2} + \frac{1000}{4} + \frac{1000}{8} + \frac{1000}{16} + \frac{1000}{32} + \cdots$

(e)
$$\sum_{n=0}^{\infty} \frac{\pi^n}{e^n}$$

(10) 10. Find the first five partial sums of the series $\sum_{n=1}^{\infty} \frac{n}{10^n}$.