I. Poisson and Gamma distributions

- 1. Plot the PDF of the Poisson distribution for $\lambda = 10.5$. What is its mode?
- 2. Explore the Gamma(s,r) distribution using the Desmos applet on our course page. Note that they call the parameters $s = \alpha$ and $r = \beta_{\text{rate}}$. For a fixed rate r = 1, what happens as the shape passes from s > 1 through s = 1 to s < 1?
- 3. The Gamma distribution has mean $\frac{s}{r}$, mode $\frac{s-1}{r}$, and variance $\frac{s}{r^2}$.
 - (a) Find Gamma(s,r) with mean 5 and sd 1/2. Check by simulating with rgamma.
 - (b) Find Gamma(s,r) with mode 6 and mean 8.

II. Posterior simulation

Consider a Poisson variable $Y \sim \text{Pois}(\lambda)$ with an unknown rate λ of success. Model our prior understanding with $\lambda \sim \text{Gamma}(1,1)$. We make two observations and find $Y_1 = 5, Y_2 = 3$.

- 1. What is the theoretical posterior distribution of λ ?
- 2. Simulate 1,000,000 values of λ .
- 3. For each value of λ , use **rpois** to choose a Y_1 and a Y_2 value.
- 4. Select just the λ values corresponding to $Y_1 = 5, Y_2 = 3$. This is a sample from the posterior distribution of $f(\lambda|Y_1 = 5, Y_2 = 3)$. How many of the 1,000,000 values did you get in your sample?
- 5. Make a density plot of these values of λ and then add the theoretical posterior distribution to the plot.

III. Soccer goals

Pick your favorite soccer team, and think about their rate λ of goals scored per game.

- 1. Tune a Gamma prior to your group's knowledge of λ . What are the mean, mode, and sd for your prior?
- 2. Make a list of how many goals your team scored in each of their last ten games.
- 3. Find the posterior Gamma distribution for λ . What are the mean, mode, and sd?
- 4. Plot the prior and posterior distributions on the same graph. Use bayesrules::plot_gamma_poisson() if you have it.

IV. Maximum likelihood

Consider the Gamma-Poisson model with data y_1, \ldots, y_n . The likelihood function is given (up to a constant) by

$$L(\lambda) \propto \lambda^{\sum y_i} e^{-n\lambda}$$

Show that the maximum of the likelihood function occurs when $\lambda = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$