I. Beta distribution

- 1. Explore the shape of $Beta(\alpha,\beta)$ using the applet https://mathlets.org/mathlets/beta-distribution Make sure to look at Beta(1,1), Beta(2,1), Beta(1,2). What can you say about the shape when $\alpha = \beta$, when $\alpha < \beta$, and when $\alpha > \beta$? What happens when $\alpha < 1$ or $\beta < 1$ or both are less than one?
- 2. If $\pi \sim \text{Beta}(\alpha,\beta)$, then $E(\pi) = \frac{\alpha}{\alpha+\beta}$. Use rbeta to check this when $\alpha = 8$ and $\beta = 2$. What is the standard deviation $\sigma(\pi)$ in this case?
- 3. The PDF for $Beta(\alpha,\beta)$ is given by

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

Check that the mode of this distribution is $\frac{\alpha-1}{\alpha+\beta-2}$. This is a calculus problem – the mode is the x which maximizes f(x), which happens at a critical point where f'(x) = 0.

II. Posterior simulation

(Section 3.5 of Bayes Rules! is helpful here)

Consider a binomial experiment $Y \sim \text{Binom}(10,\pi)$ with 10 trials and an unknown probability π of success. Model our prior understanding with $\pi \sim \text{Unif}(0,1)$.

- 1. Assume we run the experiment and have 8 successes. What is the theoretical posterior distribution of $\pi?$
- 2. Simulate 10000 values of π .
- 3. For each value of π , use rbinom to choose one y value.
- 4. Select just the π values corresponding to y = 8. This is a sample from the distribution of $f(\pi|Y=8)$, which is the posterior we're looking for. Make a density plot of these values and then add the corresponding Beta distribution to the plot.

Hint: In base R, you can use plot(density(...)) and curve. With ggplot, you can use geom_density and geom_function

III. Water and Land

- 1. As a group, tune a Beta prior to your group's knowledge of what percentage of the Earth's surface is water. What are the mean, mode, and sd for your prior?
- 2. Use the website https://www.random.org/geographic-coordinates/ to visit at least 20 locations on Earth and record how many are land and how many are water.
- 3. Find the posterior Beta distribution for the percentage of water, given your data. What are the mean, mode, and sd?
- 4. Plot the prior and posterior distributions on the same graph. Use **bayesrules::plot_beta_binomial()** if you have it.