Square Matrix Summary

A is an $n \times n$ matrix.

Non-singular	Singular
\mathbf{A} has an inverse matrix	\mathbf{A} has no inverse matrix
$\mathbf{A}_R = \mathbf{I}$	\mathbf{A}_R has at least one row of zeros
$\operatorname{rank} \mathbf{A} = n$ (full rank)	$\operatorname{rank} \mathbf{A} < n$
image $\mathbf{A} = \mathbb{R}^n$	image A is smaller than \mathbb{R}^n
nullity $\mathbf{A} = 0$	nullity $\mathbf{A} > 0$
$\operatorname{kernel} \mathbf{A} = \{0\}$	kernel A is more than $\{0\}$
$\mathbf{A}\mathbf{x} = 0$ has $\mathbf{x} = 0$ as its only solution	Ax = 0 has nonzero solutions
$\mathbf{A}\mathbf{x} = \mathbf{b}$ has $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ as its only solution	$\mathbf{A}\mathbf{x} = \mathbf{b}$ has either no solutions or infinitely many solutions
The rows of $\mathbf A$ form a basis for $\mathbb R^n$	The rows of $\mathbf A$ are linearly dependent, and fail to span $\mathbb R^n$
The columns of ${\bf A}$ form a basis for \mathbb{R}^n	The columns of $\mathbf A$ are linearly dependent, and fail to span $\mathbb R^n$
$\det \mathbf{A} \neq 0$	$\det \mathbf{A} = 0$
All eigenvalues of \mathbf{A} are non-zero	0 is an eigenvalue of \mathbf{A}