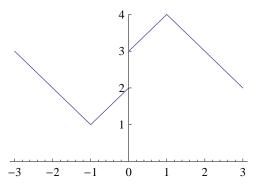
Math 370 – Sample Exam 2

(10) 1. Let f(x) be the function on [-3,3] which is graphed below. Find the constant term in the Fourier series for f.



(10) 2. Let f(x) = |x| for $-2 \le x \le 2$, and let g(x) = 4|x| + 3 for $-2 \le x \le 2$. The Fourier series for f is given by

$$f(x) = 1 - \frac{8}{\pi^2} \left(\cos\left(\frac{\pi x}{2}\right) + \frac{1}{9} \cos\left(\frac{3\pi x}{2}\right) + \frac{1}{25} \cos\left(\frac{5\pi x}{2}\right) + \cdots \right)$$

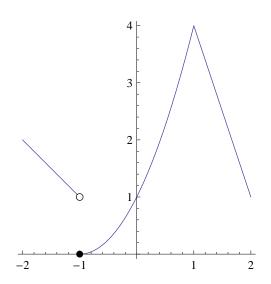
What is the Fourier series for g?

(10) 3. Let
$$f(x) = \begin{cases} 0 & \text{for } -\pi \le x < -\pi/2 \\ 1 & \text{for } -\pi/2 \le x < \pi/2 \\ 0 & \text{for } \pi/2 < x \le \pi \end{cases}$$
.

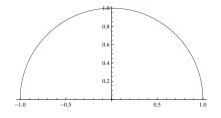
Find the Fourier series for f on the interval $[-\pi, \pi]$.

Give at least four terms in the series or write it as a summation.

- (10) 4. The function f (shown below) is defined on the interval [-2, 2]. What value does the Fourier series for f converge to:
 - (a) When x = -1?



(10) 5. Give a clockwise parameterization of the semi-circle shown below:



- (10) 6. Let $\mathbf{F}(t) = (2\cos(t), \sin(t))$. Sketch this curve for $0 \le t \le 2\pi$. Find the acceleration vector, and find four places where the tangential acceleration is zero.
- (10) 7. Let $\mathbf{F}(t) = (t, \cosh(t))$, a catenary curve. Find the curvature of \mathbf{F} . (Hint: The identity $\cosh^2(t) = 1 + \sinh^2(t)$ is helpful).
- (10) 8. Let $\mathbf{F} = \mathbf{i} + 3y\mathbf{j} 3z\mathbf{k}$. Find the streamline for \mathbf{F} through the point (0,2,3).
- (10) 9. Let $f(x, y) = y^2 x$. Accurately draw level curves for f and the vector field ∇f on the same sketch.
- (10) 10. Let $\mathbf{P}(t)$ be a parameterized curve with velocity $\mathbf{v}(t)$ and acceleration $\mathbf{a}(t)$. Suppose m > 0 is constant. If the curve satisfies $\mathbf{F} = m\mathbf{a}$ for some vector field \mathbf{F} along the curve, prove

$$\frac{d}{dt}(m\mathbf{P}\times\mathbf{v})=\mathbf{P}\times\mathbf{F}.$$

(The physical meaning of this is that rate of change of angular momentum is the torque.)