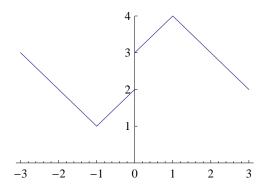
Math 370 – Sample Exam 2

(10) 1. Let f(x) be the function on [-3,3] which is graphed below. Find the constant term in the Fourier series for f.

Solution: The constant term is 5/2, the average value of f. The term $a_0 = 5$.



(10) 2. Let f(x) = |x| for $-2 \le x \le 2$, and let g(x) = 4|x| + 3 for $-2 \le x \le 2$. The Fourier series for f is given by

$$f(x) = 1 - \frac{8}{\pi^2} \left(\cos\left(\frac{\pi x}{2}\right) + \frac{1}{9} \cos\left(\frac{3\pi x}{2}\right) + \frac{1}{25} \cos\left(\frac{5\pi x}{2}\right) + \cdots \right)$$

What is the Fourier series for g?

Solution:

$$g(x) = 4f(x) + 3 = 7 - \frac{32}{\pi^2} \left(\cos\left(\frac{\pi x}{2}\right) + \frac{1}{9}\cos\left(\frac{3\pi x}{2}\right) + \frac{1}{25}\cos\left(\frac{5\pi x}{2}\right) + \cdots \right)$$

(10) 3. Let $f(x) = \begin{cases} 0 & \text{for } -\pi \le x < -\pi/2 \\ 1 & \text{for } -\pi/2 \le x < \pi/2 \\ 0 & \text{for } \pi/2 < x \le \pi \end{cases}$

Find the Fourier series for f on the interval $[-\pi, \pi]$.

Give at least four terms in the series or write it as a summation.

Solution:

$$\frac{1}{2} + \frac{2\cos(x)}{\pi} - \frac{2\cos(3x)}{3\pi} + \frac{2\cos(5x)}{5\pi} - \cdots$$

- (10) 4. The function f (shown below) is defined on the interval [-2, 2]. What value does the Fourier series for f converge to:
 - (a) When x = -1?

(a) _____**1/2**____

(b) When x = 0?

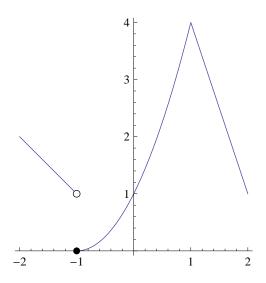
(b) _____1

(c) When x = 1?

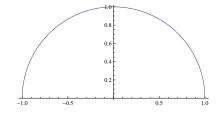
(c) <u>4</u>

(d) When x = 2?

(d) _____**3/2**____



(10) 5. Give a clockwise parameterization of the semi-circle shown below:



Solution: Many solutions, one is $\mathbf{F}(t) = (-\cos(t), \sin(t))$ for $0 \le t \le \pi$. Another is $\mathbf{F}(t) = (t, \sqrt{1-t^2})$ for $-1 \le t \le 1$.

(10) 6. Let $\mathbf{F}(t) = (2\cos(t), \sin(t))$. Sketch this curve for $0 \le t \le 2\pi$. Find the acceleration vector, and find four places where the tangential acceleration is zero.

Solution: The curve is an ellipse through (2,0),(0,1),(-2,0), and (0,-1), sketch that. $\mathbf{a}(t) = (-2\cos(t), -\sin(t))$, and the tangential acceleration is zero at the four points just listed.

(10) 7. Let $\mathbf{F}(t) = (t, \cosh(t))$, a catenary curve. Find the curvature of \mathbf{F} . (Hint: The identity $\cosh^2(t) = 1 + \sinh^2(t)$ is helpful).

Solution: $\kappa(t) = \frac{1}{\cosh^2(t)}$

(10) 8. Let $\mathbf{F} = \mathbf{i} + 3y\mathbf{j} - 3z\mathbf{k}$. Find the streamline for \mathbf{F} through the point (0,2,3).

Solution: With $\lambda \sigma' = \mathbf{F}$, we get $x' = \lambda$, $y' = 3y\lambda$, $z' = -3z\lambda$, or

$$dx = \frac{dy}{3y} = -\frac{dz}{3z}$$

Integrating pairs (both using dx) gives

$$x = \frac{1}{3} \ln |y| + c_1, x = -\frac{1}{3} \ln |z| + c_2$$

Solving gives

$$y = k_1 e^{3x}, z = k_2 e^{-3x}$$

for real numbers k_1, k_2 . To go through (0,2,3), we get

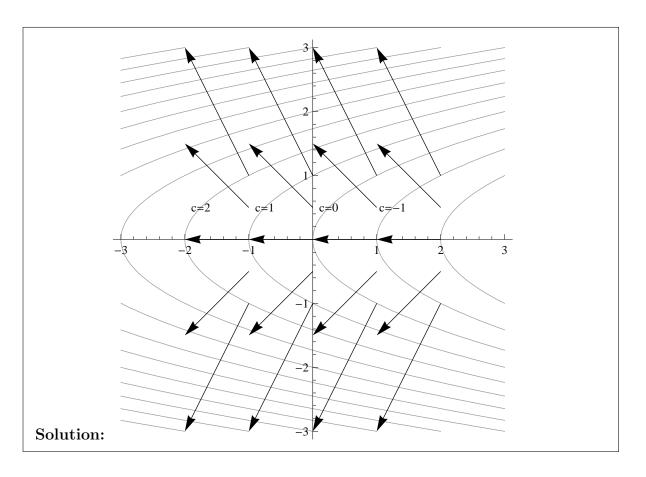
$$2 = k_1 e^0, 3 = k_2 e^0$$

so the streamline, parameterized by x, is given by

$$\sigma(x) = x\mathbf{i} + 2e^{3x}\mathbf{j} + 3e^{-3x}\mathbf{k}.$$

Note that integrating the y and z expressions gives y = 6/z which can lead to other correct answers with different parameterizations.

(10) 9. Let $f(x,y) = y^2 - x$. Accurately draw level curves for f and the vector field ∇f on the same sketch.



(10) 10. Let $\mathbf{P}(t)$ be a parameterized curve with velocity $\mathbf{v}(t)$ and acceleration $\mathbf{a}(t)$. Suppose m > 0 is constant. If the curve satisfies $\mathbf{F} = m\mathbf{a}$ for some vector field \mathbf{F} along the curve, prove

$$\frac{d}{dt}(m\mathbf{P} \times \mathbf{v}) = \mathbf{P} \times \mathbf{F}.$$

(The physical meaning of this is that rate of change of angular momentum is the torque.)

Solution:

$$\frac{d}{dt}(m\mathbf{P} \times \mathbf{v}) = \frac{d}{dt}(m\mathbf{P}) \times \mathbf{v} + m\mathbf{P} \times \frac{d\mathbf{v}}{dt}$$
$$= m\mathbf{v} \times \mathbf{v} + \mathbf{P} \times m\mathbf{a}$$
$$= m\mathbf{0} + \mathbf{P} \times \mathbf{F}$$
$$= \mathbf{P} \times \mathbf{F}$$