Math 370 – Sample Exam 1

You may use a calculator on this exam. There are 10 questions, worth a total of 100 points. (10) 1. Find the angle between the vectors $\mathbf{u} = \mathbf{i} + \mathbf{j} + \sqrt{3}\mathbf{k}$ and $\mathbf{v} = \mathbf{i} + \mathbf{j} - \sqrt{3}\mathbf{k}$.

Solution: $\mathbf{u} \cdot \mathbf{v} = -1$, $||u|| = ||v|| = \sqrt{5}$, so $\cos(\theta) = \frac{-1}{\sqrt{5}\sqrt{5}}$, so $\theta \approx 1.77$ (or $\theta \approx 101.5^{\circ}$).

(10) 2. Find all solutions to the system of equations shown below:

$$x_1 - x_2 + x_3 - x_4 - x_5 = 0$$
$$x_2 + x_4 = 0$$
$$x_3 - x_5 = 0$$

Solution: All solutions are of the form $(0, -x_4, x_5, x_4, x_5)$ with x_4 and x_5 free.

(10) 3. Let
$$\mathbf{M} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & -3 \\ -1 & 0 & 1 \end{pmatrix}$$
.

(a) Find \mathbf{M}_R , the row reduced echelon matrix equivalent to \mathbf{M} (show your work).

Solution:
$$\mathbf{M}_R = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (b) What is rank \mathbf{M} ?
- (c) What is the nullity of \mathbf{M} ?
- (d) What does the rank-nullity theorem say for this matrix?

Solution: The rank is 2, nullity is 1, and the rank-nullity theorem says that 2 + 1 = 3 is the width of the matrix.

(10) 4. Suppose A is a 2x3 matrix, B is 2x4, and C is 4x3. What size is:

- (a) **BC**
- (b) \mathbf{AC}^t

(c) $\mathbf{C}\mathbf{A}^t\mathbf{B}$

Solution: BC is 2x3, AC^t is 2x4, CA^tB is 4x4.

(10) 5. A matrix **A** is symmetric if $\mathbf{A} = \mathbf{A}^t$. Give an example of a 3x3 symmetric matrix which contains all of the numbers 1,2,3,4,5, and 6 as entries.

(10) 6. A square matrix is *orthogonal* if its transpose is equal to its inverse.Suppose A is symmetric, B is orthogonal, and both matrices are the same size.

Show that \mathbf{BAB}^{-1} is symmetric.

Solution: $(\mathbf{B}\mathbf{A}\mathbf{B}^{-1})^t = (\mathbf{B}^{-1})^t \mathbf{A}^t \mathbf{B}^t = (\mathbf{B}^t)^t \mathbf{A}\mathbf{B}^{-1} = \mathbf{B}\mathbf{A}\mathbf{B}^{-1}$, so $\mathbf{B}\mathbf{A}\mathbf{B}^{-1}$ is symmetric.

(10) 7. Let
$$\mathbf{M} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

(a) Explain geometrically what multiplication by **M** does to vectors in the plane.

(b) Find \mathbf{M}^{-1} and explain what multiplication by \mathbf{M}^{-1} does to vectors in the plane.

Solution: a. Multiplication by **M** rotates vectors 90° clockwise. b. $\mathbf{M}^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, which rotates vectors 90° counterclockwise.

(10) 8. Subspace or not a subspace? Answer for each part.

(a) S is all vectors (x, y, z) in \mathbb{R}^3 with x + y + z = 0.

- (b) S is all vectors in \mathbb{R}^4 of the form (x, y, x + 1, y + 1).
- (c) S is the line y = x in \mathbb{R}^2 .
- (d) S is the parabola $y = x^2$ in \mathbb{R}^2 .
- (e) S consists of the two lines y = x and y = -x in \mathbb{R}^2 .

Solution: a: Subspace; b: Not subspace; c: Subspace; d: Not subspace; e: Not subspace

(10) 9. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & -\frac{1}{2} & 8 & \frac{1}{6} \\ 28 & -18 & 12 & 12 & 24 \end{pmatrix}$$
.

The matrices below are each formed from \mathbf{A} by a single row operation.

Given that det $\mathbf{A} = 99$, compute:

(a) det
$$\begin{pmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & -\frac{1}{2} & 8 & \frac{1}{6} \\ 28 & -18 & 12 & 12 & 24 \end{pmatrix} = \\ (b) det \begin{pmatrix} 28 & -18 & 12 & 12 & 24 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & -\frac{1}{2} & 8 & \frac{1}{6} \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} = \\ (c) det \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 55 & 1 & 55 & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & -\frac{1}{2} & 8 & \frac{1}{6} \\ 28 & -18 & 12 & 12 & 24 \end{pmatrix} = \\ \end{cases}$$

Solution: a: 11; b: -99; c: 99

(10) 10. Let **A** be an $n \times n$ square matrix with 1's on the diagonal and -1's below the diagonal, as shown here:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ -1 & 1 & 0 & 0 & \dots & 0 \\ 0 & -1 & 1 & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & -1 & 1 & 0 & 0 \\ 0 & \dots & \dots & 0 & 0 & -1 & 1 \end{pmatrix}$$

Compute the matrix inverse \mathbf{A}^{-1} .

Solution: A^{-1} is a matrix with 1's on the diagonal and in every entry below the diagonal:

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 1 & \dots & 1 & 1 & 1 & 0 \\ 1 & \dots & \dots & 1 & 1 & 1 \end{pmatrix}$$