Homework 5

Exercises

Chapter 8.2 # 1, 3, 9, 10

Chapter 8.3 # 11

Problem A: Let $\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ be a rotation matrix. Compute the determinant of \mathbf{R}_{θ} .

Problem B: If **A** is nonsingular, show that $det(\mathbf{A}\mathbf{A}^t) > 0$.

- **Problem C:** A matrix **A** is called *orthogonal* if $\mathbf{A}^t = \mathbf{A}^{-1}$. If **A** is orthogonal, what are the possible values for det **A**?
- **Problem D:** A square matrix **A** is called *idempotent* if $\mathbf{A}^2 = \mathbf{A}$. If **A** is idempotent, what are the possible values for det **A**? Give examples of idempotent matrices with all possible values of the determinant.
- **Problem E:** Pascal's triangle is a triangle of numbers in rows, with each number equal to the sum of the two above it:

There are three natural ways to make a matrix out of Pascal's triangle. Here are examples with size 5:

$$L_{5} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \end{pmatrix} \quad U_{5} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad S_{5} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{pmatrix}$$

Check that $S_5 = L_5 U_5$. Use this to calculate det S_5 .

Problem F: Let
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 and $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ and $M = \begin{pmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & b_{11} & b_{12} \\ 0 & 0 & b_{21} & b_{22} \end{pmatrix}$.

Find $\det M$ and relate it to $\det A$ and $\det B$.