Homework 3

Notes

If **A** is an $n \times m$ matrix, then the *kernel* of **A** is the subspace of \mathbb{R}^m given by

$$\ker \mathbf{A} = \{ \mathbf{v} \in \mathbb{R}^m | \mathbf{A}\mathbf{v} = \mathbf{0} \}.$$

The kernel of **A** is also called the *solution space* of the system $\mathbf{Av} = \mathbf{0}$, for example see O'Neil Theorem 7.12. The dimension of the kernel of **A** is called the *nullity* of **A**.

The *image* of **A** is another term for the column space of **A**. image **A** is a subspace of \mathbb{R}^n . The dimension of the image of **A** is called the *rank* of **A** (as it is in the textbook).

O'Neil's Theorem 7.12(2) is usually called the *Rank-Nullity Theorem* because with this language, it says for an $n \times m$ matrix **A**,

 $\operatorname{rank} \mathbf{A} + \operatorname{nullity} \mathbf{A} = m$

Geometrically, the Rank-Nullity Theorem is a statement of conservation of dimension. Thinking of \mathbf{A} as taking a vector \mathbf{v} in \mathbb{R}^m and producing the vector \mathbf{Av} in \mathbb{R}^n , the *m* dimensions of choice for \mathbf{v} must all be accounted for: Some are annihilated by \mathbf{A} (sent to zero) and the rest are still present in the image of \mathbf{A} .

Exercises

Chapter 7.2 # 1, 3

Chapter 7.3 # 1-7 odd, find the reduced row echelon form only.

- Chapter 7.5 # 1, 3, 5
- **Chapter 7.4** # 1, 3, 5, 9, 11, 13: For each of these, also find a basis for the kernel of each matrix, find the nullity, and check that the Rank-Nullity theorem is true for that matrix.

Chapter 7.4 # 15

- **Problem A:** Let $\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ be a rotation matrix and $\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ be the projection matrix from Homework 2. Let $\mathbf{A} = \mathbf{R}_{\theta} \mathbf{P}$. Find ker \mathbf{A} and image \mathbf{A} and draw pictures of both ker \mathbf{A} and image \mathbf{A} for $\theta = 30^{\circ}, 45^{\circ}$, and 60° .
- **Problem B:** Let \mathbf{R}_{θ} and \mathbf{P} be as in Problem A. Let $\mathbf{B} = \mathbf{PR}_{\theta}$. Find ker \mathbf{B} and image \mathbf{B} and draw pictures of both ker \mathbf{B} and image \mathbf{B} for $\theta = 30^{\circ}$, 45° , and 60° .