Exercises

- Chapter 12.5 # 3
- **Chapter 12.6** # 8
- **Chapter 12.9** # 1

Problem A: Find a parameterization of the piece of cylinder shown below. Give both the formula and the range of values for u and v.

$$x = (2 + \cos(v))\cos(u)$$
$$y = (2 + \cos(v))\sin(u)$$
$$z = \sin(v)$$

What does this surface look like?

Compute the normal vector and tangent plane to the surface at the point $(\frac{4+\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2})$.

- **Problem C:** For each of these functions defined on all of \mathbb{R}^3 , decide if **F** is conservative. If so, find a potential function.
 - (a) $\mathbf{F} = 2x\mathbf{i} 2y\mathbf{j} + 2z\mathbf{k}$.
 - (b) $\mathbf{F} = (\cos(x) + y\sin(x))\mathbf{i} + x\sin(xy)\mathbf{j} + \mathbf{k}$
 - (c) $\mathbf{F} = 3\mathbf{i} \mathbf{j} + 2\mathbf{k}$.
 - (d) $\mathbf{F} = y e^{xy} \mathbf{i} + x e^{xy} \mathbf{j} + \mathbf{k}.$
- **Problem D:** Let $\varphi(x, y, z) = \arctan(y/z)$. Compute $\mathbf{F} = \nabla \varphi$. What is the largest set D on which the formula for \mathbf{F} makes sense? Find a simple closed curve C contained in D so that the line integral $\oint_C \mathbf{F} \cdot d\mathbf{R} \neq 0$.
- **Problem E:** Let f(x) be a differentiable function of one variable, and let $\mathbf{F} = f'(x)\mathbf{i} + f'(y)\mathbf{j} + f'(z)\mathbf{k}$. Is \mathbf{F} conservative? If so, find φ so that $\mathbf{F} = \nabla \varphi$.