Homework 10

Exercises

Chapter 11.5 # 1, 2, 7, 11, 13

For problems A, B, C, let $\mathbf{R} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ be the radial vector field, and let $\rho = ||\mathbf{R}||$ be the scalar function "distance from the origin".

Problem A: Show that $\nabla \rho^n = n \rho^{n-2} \mathbf{R}$ for n = 1, 2, ...

Problem B: Let **A** be a constant vector. Compute

- 1. $\nabla \cdot (\mathbf{R} \mathbf{A})$
- 2. $\nabla \times (\mathbf{R} \mathbf{A})$
- **Problem C:** Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable real valued function of one variable. Show that $\nabla \times f(\rho)\mathbf{R} = \mathbf{0}$. (Hint: Use the product rule from problem 13).
- **Problem D:** For each point A-E in the vector field **F** shown below, decide 1) if $\nabla \cdot \mathbf{F}$ is positive, negative, or zero, and 2) if the **k** component of $\nabla \times \mathbf{F}$ is positive, negative, or zero.

Problem E: Prove conclusion (2) of O'Neil Theorem 11.3, that is, show $\nabla \cdot \nabla \times \mathbf{F} = 0$.