Homework 1

Exercises

- Chapter 6.1 # 3
- Chapter 6.2 # 4, and also compute the angle between the two vectors.
- Chapter 6.4 # 5, 7, 11, 13, 15, 19, 21
- **Problem A:** Let $\mathbf{u} = (1, 1, 1)$, $\mathbf{v} = (1, 1, 0)$, and $\mathbf{w} = (1, 0, 0)$. Find a linear combination of \mathbf{u} , \mathbf{v} , and \mathbf{w} that equals (10, 2, -3).

Problem B: Let $\mathbf{u} = (1, -1, 0)$, $\mathbf{v} = (0, 1, -1)$, and $\mathbf{w} = (-1, 0, 1)$. Find a linear combination of \mathbf{u} , \mathbf{v} , and \mathbf{w} that equals (3, 1, -4).

Is (1,1,1) a linear combination of \mathbf{u} , \mathbf{v} , and \mathbf{w} ? Explain.

Bonus: Give a simple condition that describes when a vector (x, y, z) is a linear combination of the vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} .

Problem C: In each part (1-5), answer:

- Is S closed under addition?
- Is S closed under scalar multiplication?
- Is S a subspace?
- 1. Let S consist of all vectors of the form (0, x, x, y, y) in \mathbb{R}^5 .
- 2. Let S consist of all vectors of the form (1, x, x, y, y) in \mathbb{R}^5 .
- 3. Let S consist of all vectors of the form (x, y, x + y) in \mathbb{R}^3 .
- 4. Let S consist of all vectors in \mathbb{R}^2 whose x coordinate is bigger than or equal to their y coordinate. Also, draw a picture of S.
- 5. Let S consist of all vectors in \mathbb{R}^3 whose dot product with $\mathbf{v} = \mathbf{i} \mathbf{k}$ is zero.